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Abstract
Whenwe sequentially recommend top-𝑘 items to users, how can we

recommend them diversely while maintaining accuracy? Aggregate-

level diversity is an important topic in recommender system since

it is essential to maximize the potential profit of platforms by ex-

posing a variety of items to users. However, previous studies do not

consider the order of users receiving recommendations and assume

that all users receive recommendations at once. In reality, users do

not simultaneously receive recommendations so the preferences of

the latter users are not given during recommending to the former

users. In this work, we introduce the problem of sequentially diver-

sified recommendation and propose SAPID, an accurate method to

address the problem. SAPID removes the popularity bias from the

model through a negative sampling mechanism based on temporal

popularities. Then, SAPID collects candidate items to recommend

based on the distribution of preference scores. Finally, SAPID de-

cides which items to recommend immediately or later according

to their estimated exposure opportunities. Extensive experiments

show that SAPID shows the state-of-the-art performance in real-

world datasets by achieving up to 61.0% increased diversity with

38.9% higher accuracy compared to the second-best competitor.

CCS Concepts
• Information systems→ Recommender systems; Informa-
tion retrieval diversity.
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1 Introduction
When we sequentially recommend top-𝑘 items to users, how can we
increase the diversity among the items while maintaining the accu-
racy? As the variety and abundance of products and information
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Figure 1: Examples of two sequential recommendation re-
sults (I) and (II). Both results (I) and (II) achieve themaximum
accuracy. However, only result (II) achieves the maximum
aggregate-level diversity since the result (I) recommends du-
plicate items to users.

in market overwhelm the consumers, recommender systems have

become an essential element for users to discover items to consume

nowadays [13, 15, 16]. Recommender systems provide lists of items

that the users are likely to be interested in [22, 23] and encourage

the purchase from them. Hence, it is important to diversify the rec-

ommendations and expose as many products as possible to improve

the total profit of platforms [2, 8]. However, this is challenging

since the recommendation models are biased toward popular items

during training because of the skewness in real-world data [26, 31].

Recently, studies about aggregately diversified recommender sys-

tems try to address this problem [1, 7, 14, 19, 20, 27]. They aim to

increase aggregate-level diversity, which is the diversity among the

recommendations for all users.

However, existing works [7, 14, 19, 20, 27] do not consider the

order of recommendations in the aggregately diversified recom-

mendation field. In reality, the order of recommendations must be

considered since users do not simultaneously receive recommenda-

tions. Thus, a recommender system cannot access the recommenda-

tion results for future users in advance to recommend to the current

user. For instance, an e-commerce site shows recommended prod-

ucts to a customer before knowing which items will be browsed

by tomorrow’s users. This assumption fits well for the sequential

recommendation setting, where time is the main consideration [32]

so that the recommender system is strictly prohibited from using

future information to recommend [18].

Hence, we introduce the problem of sequentially diversified

recommendation to consider the order of recommendations in the

aggregately diversified recommender system. Figure 1 shows the

example of the sequentially diversified recommendation. Three

users sequentially receive recommendations (I) and (II). Both results

achieve the highest accuracy by recommending to each user their

preferred items. However, result (I) exposes only four kinds of items

and achieves poor diversity. On the other hand, result (II) achieves

the highest diversity by recommending entirely different items for

https://doi.org/10.1145/3701551.3703564
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Figure 2: Performance of SAPID and competitors in real-
world datasets. SAPID achieves the best accuracy and diver-
sity, being the closest to the best point (red arrow).

all users. This is because the result (I) recommends items that latter

users would prefer, leading to duplicate recommendations for the

next user. In contrast, result (II) effectively distributes items by

not recommending those intended for later use. The sequentially

diversified recommendation aims to maximize both accuracy and

diversity as in the result (II). As shown in Figure 1, it is important to

distinguish between the items to be recommended now and those

to be recommended later to achieve this goal.

In this paper, we propose SAPID (Sequentially Diversified Rec-

ommendation via Popularity Debiasing and Item Distribution), an

accurate method for the sequentially diversified recommendation.

SAPID removes the popularity bias from the base model by tem-

poral popularity-based negative sampling scheme. Then, SAPID

gathers the candidate pool of items to be recommended based on

the distribution of preference scores.SAPID constructs the recom-

mendation list from the candidate pool by considering whether

each item would have a chance to be recommended later or not.

Extensive experiments in real-world datasets show that SAPID

achieves up to 61.0% increased diversity with 38.9% higher accuracy

compared to the second best competitor as shown in Figure 2.

Our contributions are summarized as follows:

• Problem Formulation. We formally define the problem of

sequentially diversified recommendation, an important task

to maximize the potential profits of e-commerce platforms.

We also suggest an evaluation metric that suits the problem.

• Method. We propose SAPID, an accurate method for the se-

quentially diversified recommendation. SAPID mitigates the

popularity bias from the base model by popularity-based neg-

ative sampling in the training phase, and maximizes the di-

versity of recommendations by effectively distributing items

in the reranking phase.

• Experiments. Extensive experiments in real-world datasets

show that SAPID achieves the state-of-the-art performance

compared to other methods for the aggregately diversified

recommendation.

In the rest of our paper, we provide the related works in Section 2,

formally define the problem of sequentially diversified recommenda-

tion in Section 3, introduce our proposed method in Section 4, eval-

uate the proposed method and competitors on real-world datasets

in Section 5, and conclude this work in Section 6. The code and

datasets are available at https://github.com/snudatalab/SAPID.

2 Related Works
2.1 Aggregately Diversified Recommendation
Aggregately diversified recommendation aims to increase the diver-

sity in the overall recommendation results of all users [1]. In recent

years, this problem has attracted huge attention since it is essen-

tial to improve the potential profit of commerce platforms [2, 8]

and user satisfaction [24]. Most previous studies try to modify the

results of the base model to effectively reallocate items among

recommendation lists and increase total diversity. Kwon et al. [1],

Karakaya et al. [19], FairMatch [27], and UImatch [7] rerank the

base model’s recommendation results to achieve high diversity.

DivMF [20] and PopCon [14] further regularize the base model to

remove its popularity bias. However, they assume that recommen-

dation lists are generated simultaneously, which is not the case for

the sequentially diversified recommendation.

2.2 Individually Diversified Recommendation
Individually diversified recommendation aims to recommend more

diverse items for each user [35]. Maximizing individual-level diver-

sity enhances the user experience by showing novel items to users.

Previous works of individually diversified recommendation uti-

lize various methods such as GNN [36, 37] or DPP [34] to achieve

high diversity. Recently, ComiRec [3] and IDSR [5] address the

individual-level diversity in the sequential recommendation, trying

to recommend novel items beyond the given session. However, an

individually diversified recommender system may recommend al-

ready recommended items to new users [1], and thus individually

diversified recommendation differs from sequentially diversified

recommendation which cares about diversity over all users.

2.3 Long-tail Recommendation
Recommender systems tend to perform poorly for unpopular items

due to the lack of information about long-tail items in skewed

real-world datasets [17, 30]. Long-tail recommendation aims to

obtain better representations of long-tail items from the lacking

information to provide higher-quality recommendations with those

items [12, 21, 25, 33]. However, the main focus of the long-tail

recommendation differs from the aggregately diversified recom-

mendation or sequentially diversified recommendation since they

care about balancing the quantity of each item’s recommendations

rather than improving the quality.

3 Problem Formulation
3.1 Sequentially Diversified Recommendation
Problem 1 (Sequentially Diversified Recommendation): Assume

that a session is a sequence of user-item interactions for a single user

with timestamps. For the set U of users, the sessions S1, · · · , S |U |
are given and sorted in their last interactions’ time order. Each

session is provided sequentially to perform a recommendation, one

at a time. The problem is to recommend a list R𝑢 of 𝑘 items for each

session S𝑢 that are most likely to appear next in the session while

maximizing both the accuracy and the aggregate-level diversity. □

https://github.com/snudatalab/SAPID
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(b) Sequentially diversified recommendation

Figure 3: Illustrative comparison between the aggregately
diversified recommendation and the sequentially diversified
recommendation. See Section 3.1 for details.

Note that the recommender system needs to generate R𝑢 as

soon as S𝑢 is provided. Thus, the information of S𝑢+1, · · · , S𝑛 and

R𝑢+1, · · · ,R𝑛 are not given while recommending for S𝑢 . We con-

sider timestamps of user-item interactions as well as the timely

order between users in formulating the problem to have consis-

tency in considering the time. However, we do not consider further

content information such as categories or genres in this paper.

Figure 3 illustrates the difference between the sequentially di-

versified recommendation and the conventional aggregately diver-

sified recommendation. We are trying to recommend a cherry or

a kiwi for each user. In aggregately diversified recommendation

problem, we recommend to both users simultaneously as shown in

Figure 3(a). Hence, the ideal strategy is to recommend a kiwi to user

1 and a cherry to user 2 since user 1 prefers both fruits while user

2 prefers only a cherry. In contrast, in the sequentially diversified

recommendation problem, the recommender system does not have

information about user 2 when recommending to user 1 as shown

in Figure 3(b). In this case, if we naively recommend a cherry to

user 1 based on user 1’s preferences, we face a dilemma when rec-

ommending to user 2: to achieve diversity, the model would have

to recommend a kiwi which user 2 does not like, or to maintain ac-

curacy, the model would have to recommend a cherry which leads

to poor diversity. Thus, it is not easy to simply use effective item

allocation techniques from conventional aggregately diversified

recommendation methods for sequentially diversified recommen-

dation. Instead, it is crucial to consider the future demand for items

and make decisions on which items to recommend immediately

and which ones to reserve for the latter use.

3.2 Evaluation
There are two key criteria to evaluate the performance of sequen-

tially diversified recommendation: accuracy and diversity.

3.2.1 Accuracy. The accuracy of a recommendation system refers

to how well the model’s recommendations align with the items

Time

HR: 1 HR: 0.25 HR: 0.25

HR: 0.5 HR: 0.5 HR: 0.5

0.33

Harmonic 

Mean
0.5
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Figure 4: Examples of evaluating 3-fold harmonic hit ratio
for two models (I) and (II). Yellow boxes indicate the correct
recommendations (hit), and grey boxes indicate the wrong
recommendations (miss) for each instance.

that the user prefers. However, traditional accuracy metrics such as

HR or nDCG do not reflect the consistency of a recommendation

result. For instance, consider a recommender system that follows

a strategy of recommending 1) the highest-scored items for the

first 80% of users, and 2) previously unrecommended items for the

last 20% to increase diversity. This recommender system would

achieve at least 80% of the accuracy of the base model since the

recommendation results for the first 80% of users would be the same.

On the other hand, the latter 20% of users receive items that are

entirely unrelated to their preferences, which is not acceptable for

sales platform due to poor user experiences. Hence, we need new

metrics to evaluate the consistency of the recommendation results

as well as the overall accuracy to prevent a model from unfairly

achieving high performance by ignoring latter users.

We propose the 𝑘-fold harmonic metric to jointly evaluate the

accuracy and the consistency of recommendation results.

Definition 3.1. Let A(𝑓 , S) be an accuracy metric evaluating the

recommender system 𝑓 for sessions S of length 𝑛. Then, the 𝑘-fold
harmonic version A𝐻 of A is as follows:

A𝐻 (𝑓 , S) = 𝐻 (A(𝑓 , [S1 : S𝑛
𝑘
]), · · · ,A(𝑓 , [S (𝑘−1)𝑛

𝑘
+1 : S𝑛])), (1)

where 𝐻 (·) is the harmonic mean function. □

Figure 4 illustrates the evaluation process of 3-fold harmonic hit

ratios of two models (I) and (II). To calculate 3-fold harmonic hit

ratio, we first divide session instances into three portions and calcu-

late the hit ratio in each portion. Then, we calculate the harmonic

means of hit ratios.

Note that the maximum harmonic hit ratio or nDCG is equal to

the average hit ratio or nDCG because of the arithmetic-harmonic

mean inequality. Since the equality condition holds when all values

are equal, these newmetrics give the highest score to themodel with

the most uniform accuracy among models with the same average

accuracy. For instance, even if two models (I) and (II) shown in

Figure 4 have the same average hit ratios, model (I) achieves a

higher 3-fold harmonic hit ratio than model (II). This is because

model (I) consistently performs well across all periods while model

(II) performs poorly in the latter sessions.

3.2.2 Diversity. The diversity of the sequentially diversified rec-

ommendation represents how diverse the item distribution is in

the overall recommendation results. It is calculated by entropy or

Gini index both of which measure the evenness in distributions.

Entropy gives a positive real value, and a larger entropy indicates

better diversity. Gini index ranges from 0 to 1, and a lower Gini

index indicates better diversity.
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Figure 5: The overall architecture of SAPID.

4 Proposed Method
In this section, we propose SAPID (Sequentially Diversified Rec-

ommendation via Popularity Debiasing and Item Distribution), an

effective approach for the sequentially diversified recommendation.

4.1 Overview
We address the following challenges to achieve high performance

in the sequentially diversified recommendation:

C1. Skewed real-world data. Long tail items are underrated during

the training process because of the skewed real-world data. How

can we prevent the model from being biased toward the skewness

of the real-world data?

C2. Diversity maximization. How can we increase the diversity of

recommendations while maintaining the accuracy?

C3. Accuracy consistency. If we repeatedly recommend a few items

to the earlier users, we have to recommend the remaining items

to the latter users to improve diversity. However, those items

may not be preferred by the latter users. How can we decide

which items to recommend now or later?

The main ideas of SAPID are summarized as follows:

I1. Temporal popularity debiasing. SAPID considers the item

frequencies during a given session when sampling negative items

to prevent the popularity bias in the model.

I2. Candidate selection. SAPID constructs the candidate pool for

each user considering their preference score predicted by the base

model. Then, SAPID chooses diverse items from the candidate

pool to increase diversity while preserving accuracy.

I3. Effective item distribution. SAPID judges whether the item

would have opportunities to be recommended later or not to

decide which items to recommend immediately and which items

to preserve.

Figure 5 shows the overall process of SAPID. SAPID is composed

of two phases: training phase and reranking phase. In the training

phase, SAPID trains a sequential recommendation model such as

SASRec [18] or GRU4Rec [11] as a base model with a temporal

popularity-based negative sampling scheme to prevent the model

from being biased toward popular items. In the reranking phase,

SAPID checks how many times each item is recommended and

will be recommended. Then, SAPID generates the recommendation

lists by selecting the best items to increase the diversity from the

candidate set generated by the base model.

4.2 Training Phase
How can we eliminate the popularity bias introduced by the skewed

distribution during the model training process? The BPR loss in

recommendation model training aims to maximize the difference

between the recommendation scores of positive samples, which are

items a user has interacted with, and negative samples, which are

randomly selected items the user has not interacted with. The as-

sumption behind this loss function is that a user would prefer items

they have interacted with over those that they have not interacted

with [29]. However, this approach leads to the popularity bias in the

model, as lesser-known items are underestimated. This is because a

user may be unaware of the lesser-known items even if those items

meet the user’s taste. Hence, lesser-known items are overly chosen

as negative samples if the sampling probability is uniform. This

leads to the poor diversity of the model’s recommendation results.

For instance, if a user session was established before 2020 which

is before the release of “Queen’s Gambit”, the absence of interac-

tions with the series is because of the unavailability of the content

at that time rather than the user’s disinterest. In this case, choosing

“Queen’s Gambit’ as a negative sample unfairly decreases the rec-

ommendation score of the series. Conversely, if a user session was

formed after the release and the user did not engage with “Queen’s

Gambit,” it indicates a lack of interest in the series. It is appropriate

to choose “Queen’s Gambit’ as a negative sample for this case.

Our approach to address this issue is to consider temporal item

popularity when selecting negative samples. SAPID finds which

items were popular and which were not when the user session was

formed. Then, SAPID reduces the frequency of lesser-known items

being chosen as negative samples. Thus, unpopular items are not

unfairly chosen as negative samples, mitigating the popularity bias.

To implement this idea, SAPID calculates the temporal popularity

PS𝑝𝑜𝑝 of negative items for a session S by counting all interactions

of users and items not included in S that happened between the

first interaction of the session and the last interaction of the session.

Let PS
𝑢𝑛𝑖

be the uniform distribution for all items not included in S.

Then, the probability distribution PS for each item to be selected as

a negative sample for the session S is defined as follows:

PS = 𝛼PS𝑝𝑜𝑝 + (1 − 𝛼)PS𝑢𝑛𝑖 , (2)

where 𝛼 is a hyperparameter which ranges from 0 to 1.

4.3 Reranking Phase
How can we maintain accuracy while increasing diversity? When

striving to enhance diversity by recommending items that have

not been recommended before, there is a trade-off as it may lead to

recommending items that the user does not prefer, thereby poten-

tially reducing the accuracy of recommendations. SAPID adopts the

reranking method to address this problem. The reranking method

is a technique to choose items to recommend from the candidate
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Figure 6: Preference scores of the first user on Ml-1m dataset
for highly ranked 50 items predicted by SASRec. Preference
scores sharply drop at a few points. Hence, it is ideal to com-
pose the candidate set based on these points.

pool generated by a base model [1, 7, 14, 27]. To achieve high per-

formance in this process, we must consider 1) how to compose

a candidate set of recommendable items and 2) which items to

recommend from the candidate set to maximize the diversity.

4.3.1 Constructing Candidate Pool. How can we accurately gather

recommendable items for each user? Previous studies [14, 27] sim-

ply collect highly ranked 𝑐 items through the base model where 𝑐 is

a hyperparameter greater than the length 𝑘 of a recommendation

list. However, this approach leads to a sharp decline in item prefer-

ence within the candidate set. For example, if we collect top-2 items

as the candidate set for each user in Figure 3, user 1’s candidate

set has two recommendable items that have comparable preference

scores. On the other hand, a kiwi would be included in the candidate

set of user 2, which is significantly less preferred compared to a

cherry and thus not recommendable. Hence, fixing the size of the

candidate pool allows lesser preferred items to get mixed into the

pool and harms the quality of a recommendation.

In Figure 6, we visualize the preference scores and differences

with consecutively ranked items for the top 50 items predicted by

SASRec for the first user in the Ml-1m dataset to analyze how the

item qualities of the candidate set drop in the real-world dataset.

Note that there are distinct drop-off points where item preference

sharply declines, indicating a significant quality gap between the

items before and after the points. Hence, it is ideal to compose the

candidate set based on these drop-off points.

SAPID refers to the difference of preference scores to compose

the candidate set based on drop-off points. First, SAPID examines

the score differences between consecutively ranked items for the

top 𝑐 items evaluated by the base model. Then, SAPID identifies

the drop-off points where the score differences fall within the top

25%. Finally, SAPID collects items above the point closest to the

𝑐-th ranked item as a candidate pool. This ensures that all candidate

items are preferred by the user.

4.3.2 Selecting Items to Recommend. How can we choose items

from the candidate pool to maximize the diversity? SAPID judges

how much an item contributes to diversity by counting its expected

number of being recommended. To achieve better diversity, the

recommender system needs to recommend less frequently recom-

mended items. For instance, assume that there are a popular item A

and a lesser-known item B in the candidate pool. Then, A is more

likely to be recommended later for other users since it is a more

popular one. Thus, A has a higher expected number of being recom-

mended so it is better to recommend B for better diversity. On the

other hand, assume that there are items C and D in the candidate

Algorithm 1 Reranking phase of SAPID

Input: The base model’s recommendation lists R𝑐
1
, · · · ,R𝑐|U |

of length 𝑐 each, vectors denote their preference scores

G𝑐
1
, · · · ,G𝑐

|U | , popularity distribution P𝑝𝑜𝑝 = [𝑝1, · · · , 𝑝 |I |]
Output: Recommendation lists R1, · · · ,R |U | of length 𝑘 each

1: Initialize a vector C of length |I| to [0, · · · , 0]
2: for 𝑢 in [1, · · · , |U|] do
3: /* Constructing Candidate Pool */
4: Initialize a vector D of length 𝑐 − 1
5: D← G𝑐

𝑢 [: −1] − G𝑐
𝑢 [1 :]

6: Let d be the indices of the top 25% values in D
7: Compose the candidate pool R𝑐𝑎𝑛𝑑𝑢 as R𝑐𝑢 [: d[−1]]
8: /* Selecting Items to Recommend */
9: Initialize a vector E of length 𝑐

10: for 𝑖𝑟 , 𝑖𝑡𝑒𝑚 in 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (R𝑐𝑎𝑛𝑑𝑢 ) do
11: E[𝑖𝑟 ] ← C[𝑖𝑡𝑒𝑚] + 𝑝𝑖𝑡𝑒𝑚 · ( |U| − 𝑢) · 𝑘
12: end for
13: Let a set K be the indices of the smallest 𝑘 values in E
14: R𝑢 ← []
15: for 𝑖𝑡 in K do
16: R𝑢 .𝑎𝑝𝑝𝑒𝑛𝑑 (R𝑐𝑎𝑛𝑑𝑢 [𝑖𝑡 ])
17: C[R𝑐𝑎𝑛𝑑𝑢 [𝑖𝑡 ]] ← C[R𝑐𝑎𝑛𝑑𝑢 [𝑖𝑡 ]] + 1
18: end for
19: end for
20: return R1, · · · ,R |U |

pool where currently C is more recommended for previous users. In

this case, C has a higher expected number of being recommended

since it has already been recommended a lot. Hence, it is better to

recommend D for better diversity.

SAPID calculates the expected number of an item being recom-

mended by summing 1) the number of times the item has been

recommended for the previous sessions and 2) the estimated num-

ber of times it will be recommended for the remaining sessions. We

assume that the recommendation rate of each item for future users

is proportional to its popularity. Thus, the total expected number

𝐸𝑢 (𝑖) of recommendations for item 𝑖 when recommending to the

𝑢-th user is as follows:

𝐸𝑢 (𝑖) = 𝐶 (𝑖) + (|U| − 𝑢)𝑘 × 𝑝𝑖 , (3)

where 𝐶 (𝑖) is the current count of recommendations for item 𝑖 , U
is the set of all users, 𝑘 is the length of a recommendation list, and

𝑝𝑖 is the ratio of item 𝑖’s occurrence count to the total number of

interactions in the training data. Note that ( |U| − 𝑢)𝑘 indicates the

remaining recommendation slots for future users.

4.3.3 Algorithm. Algorithm 1 shows the reranking phase of SAPID.

SAPID first initializes the current count C of each item to zero in

line 1. Then, SAPID processes each user through a for loop. From

lines 3 to 7, SAPID collects the candidate pool based on the score

differencesD. From lines 9 to 12, SAPID calculates the expected total

number E of recommendations for each item at the time. In line 13,

SAPID finds the set K of indices of the least recommended 𝑘 items

from the candidate pool. From lines 14 to 18, SAPID generates the

recommendation list for the processing user and updates C. SAPID
returns recommendation lists in line 20.
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Table 1: Summary of datasets.

Dataset Users Items Interactions Avg. Length

Gowalla
1

34,688 63,279 2,438,708 70.30

AMZ-elec
2

33,602 16,448 788,143 23.46

AMZ-home
2

12,000 8,445 291,560 24.30

Ml-1m
3

6,040 3,706 1,000,209 165.60

1
https://snap.stanford.edu/data/loc-gowalla.html

2
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

3
https://grouplens.org/datasets/movielens/1m/

4.4 Complexity Analysis
We analyze the time complexity of SAPID once the recommendation

lists of the base model are given.

Theorem 4.1. Time complexity of Algorithm 1 is𝑂 ( |U| (𝑐+𝑘 log 𝑐)),
where U is the set of all users, 𝑐 is the size of a candidate pool, and 𝑘
is the length of a recommendation list. □

Proof. Note that Algorithm 1 repeats the same process for each

user to generate recommendation lists. Hence, we need to consider

only the time complexity to generate a recommendation list for a

single user (from lines 3 to 18). The time complexity to collect the

candidate pool from lines 3 to 7 and calculate E from lines 10 to 12 is

𝑂 (𝑐) since they are simple vector operations. In line 13, finding the

smallest 𝑘 values in E requires 𝑂 (𝑐 + 𝑘 log 𝑐) time with min-heap

structure. The time complexity to construct the recommendation

list and update C is 𝑂 (𝑘). Thus, the time complexity to process a

user in Algorithm 1 is 𝑂 (𝑐 + 𝑘 log 𝑐) and the time complexity to

process |U| users is 𝑂 ( |U| (𝑐 + 𝑘 log 𝑐)). □

5 Experiment
We perform experiments to address the following questions:

Q1. Performance (Section 5.2). Does SAPID achieve higher diver-

sity while sacrificing lesser accuracy compared to competitors?

Q2. Hyperparameter sensitivity (Section 5.3). How does the per-

formance of SAPID change with variations in hyperparameters?

Q3. Case study (Section 5.4).Why is considering the latter users

important to achieve better performance in the sequentially di-

versified recommendation?

5.1 Experimental Setup
Datasets. We use four real-world datasets for sequential recom-

mendation as summarized in Table 1. Gowalla [6] contains users’

checking-in data on a location-based social networking platform,

Gowalla. AMZ-elec and AMZ-home [10, 28] are product review

datasets collected from the e-commerce platform, Amazon. AMZ-

elec consists of reviews for electronic products, while AMZ-home

consists of reviews for home and kitchen products. Ml-1m [9] is a

movie rating dataset collected by the GroupLens research group.

Each dataset consists of user-item interaction history along with

timestamps. We remove users and items with fewer than 15 interac-

tions since we focus on recommending items to users with session

history, rather than addressing the cold start problem.

Base models. We use the following two widely used sequential

recommendation models as our base models for experiments.

• SASRec [18]. SASRec is a Transformer-based sequential

recommendation model. It encodes a user session with the di-

rectional Transformer encoder to extract the session owner’s

preference and recommend the next item.

• GRU4Rec [11]. GRU4Rec is an RNN-based sequential rec-

ommendation model. It utilizes GRU cells to process each

interaction of the given session and extracts the session’s

hidden states to predict the next item of the session.

Baselines. Weuse aggregately diversified recommendationmethods

as baselines to compare with SAPID. Note that most aggregately di-

versified recommendation methods do not apply to the sequentially

diversified recommendation since they require recommendation re-

sults for all users at once. For instance, FairMatch [27] requires the

recommendation lists for all users to construct a user-item graph.

Karakaya et al. [19] need to count the frequencies of each item

within the entire recommendation results. PopCon [14] simultane-

ously generates recommendation lists for all users at once. However,

recommendation results of the latter users are not given when rec-

ommending items to the former users in the problem of sequentially

diversified recommendation. Thus, the baselines have to generate a

recommendation list for each user based only on information about

the user without knowing the recommendation results of the base

model for other users. Hence, we use the following three diversified

recommendation methods as our baselines.

• Kwon et al [1]. Kwon et al. modify the recommendation

scores given by a base model to trade-off accuracy and di-

versity of recommendation results.

• DPP [4]. DPP utilizes a determinantal point process to find

diverse items which are lesser recommended. DPP also in-

creases aggregate-level diversity despite focusing mainly on

individual-level diversity.

• UImatch [7]. UImatch assigns the maximum recommenda-

tion frequencies for each item and greedily selects items to

recommend based on their recommendation scores.

Evaluation protocols. We employ a leave-one-out protocol and re-

move the last interaction of each user to construct the training data.

We use the removed interaction as the ground truth of the test data

and the rest as the test input for each user’s session history during

the evaluation. We assume that the user receives a recommendation

when they interact with an item. Hence, we provide each session

in the time order of the user’s last interaction to evaluate the per-

formance. We use 5-fold harmonic hit ratio and 5-fold harmonic

nDCG to measure the accuracy. We use entropy and the Gini index

to measure the diversity.

Training details. We set the dimensionality of embeddings to 50 for

all models. We use two self-attention blocks and a drop-out ratio of

0.5 for SASRec. We use one GRU layer for GRU4Rec. All the models

are trained for 200 epochs with Adam optimizer with learning rate

0.001, 𝛽1 = 0.9, and 𝛽2 = 0.98. We use a reverse prediction scheme

and 𝑇𝐻 ∈ [0.5, 1) for Kwon et al. We use the implementation on

https://github.com/laming-chen/fast-map-dpp for DPP.

5.2 Performance (Q1)
We measure the accuracy and the diversity of SAPID and base-

lines. We train each base model twice: without and with temporal

https://snap.stanford.edu/data/loc-gowalla.html
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://grouplens.org/datasets/movielens/1m/
https://github.com/laming-chen/fast-map-dpp
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Table 2: Performance of SAPID and competitors compared to the base model. Bold texts and underlined texts indicate the best
and the second-best performances among competitors, respectively. SAPID outperforms all competitors in most cases.

Base model : SASRec Without Debiasing With Debiasing

Dataset Method HR@10 (↑) nDCG@10 (↑) Entropy@10 (↑) Gini@10 (↓) HR@10 (↑) nDCG@10 (↑) Entropy@10 (↑) Gini@10 (↓)

Gowalla

SASRec (Base) 0.0288 0.0150 8.4082 0.9351 0.0208 0.0101 8.9862 0.8982

Kwon et al. 0.0044 0.0021 10.1034 0.6939 0.0035 0.0015 10.3057 0.6354

DPP 0.0129 0.0084 6.8514 0.9767 0.0018 0.0014 7.1015 0.9721

UImatch 0.0050 0.0023 10.5467 0.4487 0.0068 0.0040 10.5737 0.4300

SAPID (Proposed) 0.0097 0.0050 10.6361 0.4193 0.0092 0.0049 10.6517 0.3999

AMZ-elec

SASRec (Base) 0.0268 0.0137 6.0685 0.9762 0.0179 0.0098 7.3271 0.9145

Kwon et al. 0.0018 0.0008 6.7966 0.9532 0.0020 0.0009 7.8894 0.8635

DPP 0.0018 0.0011 6.7193 0.9459 0.0030 0.0016 7.6090 0.8887

UImatch 0.0017 0.0008 9.1471 0.5047 0.0042 0.0030 9.1598 0.4978

SAPID (Proposed) 0.0042 0.0023 9.2526 0.4758 0.0062 0.0035 9.2896 0.4642

AMZ-home

SASRec (Base) 0.0511 0.0350 6.0015 0.9487 0.0371 0.0266 6.9828 0.8862

Kwon et al. 0.0025 0.0010 6.5884 0.9130 0.0022 0.0009 7.3245 0.8419

DPP 0.0040 0.0023 6.7288 0.9003 0.0045 0.0025 7.1502 0.8623

UImatch 0.0000 0.0000 8.7149 0.3933 0.0036 0.0030 8.7261 0.3869

SAPID (Proposed) 0.0067 0.0046 8.8911 0.2555 0.0050 0.0037 8.9682 0.1508

Ml-1m

SASRec (Base) 0.1805 0.0914 6.8847 0.7958 0.1577 0.0790 7.2376 0.7124

Kwon et al. 0.0000 0.0000 7.2282 0.7177 0.0000 0.0000 7.5405 0.6109

DPP 0.0128 0.0070 6.5724 0.8364 0.0134 0.0082 6.6078 0.8335

UImatch 0.0774 0.0374 7.4725 0.6406 0.1180 0.0628 7.5428 0.6148

SAPID (Proposed) 0.0820 0.0423 7.7248 0.5123 0.1196 0.0620 7.5494 0.6057

Base model : GRU4Rec Without Debiasing With Debiasing

Dataset Method HR@10 (↑) nDCG@10 (↑) Entropy@10 (↑) Gini@10 (↓) HR@10 (↑) nDCG@10 (↑) Entropy@10 (↑) Gini@10 (↓)

Gowalla

GRU4Rec (Base) 0.0182 0.0092 9.4498 0.8374 0.0120 0.0054 9.4255 0.8468

Kwon et al. 0.0049 0.0022 10.2539 0.6477 0.0053 0.0023 10.2281 0.6638

DPP 0.0052 0.0036 8.7888 0.9010 0.0014 0.0011 7.9300 0.9496

UImatch 0.0066 0.0035 10.4368 0.5057 0.0090 0.0049 10.4624 0.5039

SAPID (Proposed) 0.0083 0.0044 10.6866 0.3780 0.0105 0.0056 10.5885 0.4459

AMZ-elec

GRU4Rec (Base) 0.0094 0.0047 7.5910 0.8984 0.0058 0.0027 8.0572 0.8401

Kwon et al. 0.0030 0.0013 8.8817 0.6695 0.0020 0.0009 9.2119 0.5380

DPP 0.0024 0.0014 7.2973 0.9239 0.0041 0.0017 7.1595 0.9284

UImatch 0.0021 0.0011 8.8608 0.6372 0.0036 0.0023 9.1897 0.5064

SAPID (Proposed) 0.0049 0.0028 9.1767 0.5222 0.0059 0.0034 9.3573 0.4168

AMZ-home

GRU4Rec (Base) 0.0165 0.0081 7.4512 0.8321 0.0119 0.0060 7.9003 0.7492

Kwon et al. 0.0050 0.0024 8.3049 0.6368 0.0044 0.0022 8.6279 0.4933

DPP 0.0045 0.0023 7.0759 0.8735 0.0047 0.0022 7.4284 0.8279

UImatch 0.0051 0.0026 8.6107 0.4644 0.0080 0.0045 8.7071 0.4070

SAPID (Proposed) 0.0067 0.0046 8.8911 0.2555 0.0083 0.0060 8.8827 0.2572

Ml-1m

GRU4Rec (Base) 0.1716 0.0860 6.9456 0.7837 0.1508 0.0736 7.3581 0.6778

Kwon et al. 0.0000 0.0000 7.4264 0.6536 0.0000 0.0000 7.6081 0.5832
DPP 0.0153 0.0094 6.7176 0.8184 0.0202 0.0111 6.5236 0.8455

UImatch 0.0773 0.0393 7.4676 0.6428 0.1075 0.0586 7.5251 0.6209

SAPID (Proposed) 0.0820 0.0423 7.7248 0.5123 0.1133 0.0587 7.5776 0.5929

Table 3: Value of hyperparameter 𝑐 for each experiment.
Model Gowalla AMZ-elec AMZ-home Ml-1m

SASRec 200 600 500 50

Debiased SASRec 200 200 500 24

GRU4Rec 250 500 500 50

Debiased GRU4Rec 150 250 275 26

popularity-based debiasing. SAPID without debiasing shows the

performance when only the reranking phase of SAPID is applied.

SAPID with debiasing shows the performance when all of our main

ideas are applied. We also apply debiasing to competitors to confirm

that SAPID performs better even if they also utilize the debiasing

mechanism of SAPID. We set the debiasing hyperparameter 𝛼 to

0.5. The hyperparameter 𝑐 for each experiment is given in Table 3.

Table 2 shows the results. SAPID shows the best accuracy and

diversity among competitors in most caseswhich proves the effec-

tiveness of the reranking phase of SAPID. This is because SAPID

finds items that improve the diversity considering their future de-

mands. Figure 2 summarizes the results with SASRec as the base

model. Note that SAPID shows the best accuracy and diversity.

5.3 Hyperparameter Sensitivity (Q2)
Debiasing hyperparameter 𝛼 . To examine the effect of the debiasing

hyperparameter 𝛼 ,we evaluate the performance of SAPID with

SASRec as the base model in Ml-1m dataset while changing 𝛼 . Note

that popular items when the session is formed are more likely to

be selected as negative samples as 𝛼 increases.

Table 4 shows the results. Note that higher values of HR, nDCG,

and Entropy are better, while a lower value of Gini is preferable. As

𝛼 increases, accuracy gradually decreases while diversity increases.

This trend proves the effectiveness of the temporal popularity debi-

asing method, as it encourages the model to recommend a wider

range of items beyond the popular ones by assigning a higher prob-

ability of being negative samples for popular items.
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Table 4: Analysis on debiasing hyperparameter 𝛼 in Ml-1m
dataset with SASRec as the base model. Note that accuracy
decreases and diversity increases as 𝛼 increases.

Accuracy Diversity
𝛼 HR@10(↑) nDCG@10(↑) Ent.@10(↑) Gini@10(↓)
0.05 0.2020 0.1052 6.9500 0.7842

0.25 0.1712 0.0889 7.0411 0.7648

0.5 0.1577 0.0790 7.2376 0.7124

0.75 0.1458 0.0729 7.2714 0.7015

0.95 0.1409 0.0693 7.4745 0.6316
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Figure 7: Change in the performance of SAPID while the
size 𝑐 of the candidate pool varies. SAPID further improves
diversity by sacrificing accuracy as 𝑐 increases.

Meanwhile, examining the performance of the original SASRec

which is equivalent to 𝛼 = 0 as reported in Table 2, the accuracy

is higher when 𝛼 = 0.05. This proves that the traditional negative

sampling strategy not only hinders diversity but also damages

the accuracy by making the model biased and over-recommends

popular items. Hence, mitigating bias is important for not only the

diversified recommendation but also accurate recommendation.

Initial candidate pool size 𝑐 . We change the number 𝑐 of the candi-

date pool and observe the change in the performance of SAPID to

analyze its effect. Figure 7 shows the performance change of SAPID

using SASRec as the base model on four real-world datasets. In all

datasets, SAPID shows a clear pattern that it improves diversity by

sacrificing accuracy as 𝑐 increases. Hence, it is important to choose

a proper 𝑐 to control the trade-off and achieve desired performance.

5.4 Case Study (Q3)
To investigate how the consideration of future users affects the

performance,we analyze the recommendation qualities of SAPID

and UImatch on Gowalla dataset. We use a debiased SASRec as

the base model. Note that UImatch does not consider future users

and greedily constructs recommendation lists. Meanwhile, SAPID

considers future users and preserves popular items for later use.

Figure 8 shows the average rank of items received by each user

in their chronological order. The rank of items is determined by the

base model. A higher average rank indicates that the user received

items they are more likely to prefer, while a lower average rank

denotes that the items recommended are irrelevant to the user.

UImatch discovers lowly ranked 

items to find diverse items.

SAPID finds diverse item from highly ranked items.

User order
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\
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(Low rank)

Figure 8: The average rank of recommended items of SAPID
and UImatch on Gowalla dataset. Unlike UImatch, SAPID
consistently recommends highly ranked items for all users.

We observe that SAPID consistently recommends highly ranked

items throughout all recommendations, whereas UImatch’s recom-

mendation quality significantly drops for the latter users. This is

because the greedy approach exhausts all popular items early on,

leaving less relevant items to be recommended to the latter users to

achieve higher diversity as shown in Figure 3(b). In contrast, SAPID

forms a candidate pool by considering the distribution of item pref-

erences for each user and then prioritizes items that are expected

to be recommended less in the future. Thus, SAPID maintains high

recommendation quality while also enhancing diversity.

6 Conclusion
In this paper, we introduce the problem of sequentially diversified

recommendation, an important problem to maximize the potential

profit of e-commerce platforms. We also suggest an evaluation

metric that aligns with the problem.We propose SAPID, an effective

method for the problem to achieve high accuracy and diversity.

SAPID removes the popularity bias of the base model by adjusting

the negative sampling probability based on each item’s temporal

popularity. Then, SAPID collects a set of recommendable items for

each user based on their preference scores. Finally, SAPID generates

a recommendation list considering which items to recommend

immediately and which items to recommend later based on their

potential chances to be exposed later. SAPID shows the state-of-the-

art performance in real-world datasets by improving up to 61.0%

diversity with 38.9% higher accuracy compared to the second best

competitor. Future works include extending this work to achieve

diversity and accuracy for sequential bundle recommendation.
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